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Abstract 

Advanced models can now interpret and understand photos, videos, and text. Conventional AI models focused on image 
classification, text analysis, and video processing. Multimodal foundation models combine data analysis in one 
framework to meet the requirement for more integrated AI systems. The models may learn joint representations from 
several modalities to generate text from images, analyze movies with textual context, and answer visual queries. Cross-
modal learning's theoretical foundations and architectural advances have helped multimodal foundation models grow 
rapidly. This study explores their success. Transformer-based architectures have profoundly changed AI model data 
modalities. Self-attention and contrastive learning help the models align and integrate data across modalities, improving 
data understanding. The study analyses well-known multimodal models CLIP, ALIGN, Flamingo, and Video BERT, 
emphasizing on their design, training, and performance across tasks. Their performance in caption generation, video-
text retrieval, and visual reasoning has led to more adaptable AI systems that can handle complex real-world scenarios. 
Despite promising results, multimodal learning faces various obstacles. To create effective models, you need substantial, 
high-quality datasets. Computers struggle to handle many data formats simultaneously, and bias and interpretability 
difficulties arise. The limitations and ethical implications of multimodal models in healthcare and autonomous systems 
are examined in this research. This study investigates the future of multimodal foundation models, focused on reducing 
processing, enhancing model fairness, and applying them to audio, sensor data, and robotics. Understanding and 
integrating multimodal information is essential for creating more intuitive and intelligent systems, therefore unified 
multimodal models could change human-computer interaction. Overall, multimodal foundation models drive the search 
for generalized and adaptable AI systems. These models' capacity to combine picture, video, and text data could alter 
many applications, driving creativity across sectors and stimulating AI research. 
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1. Introduction

With the rapid growth of digitalization, there has been a considerable increase in the quantity and type of data that has 
been generated across a wide range of platforms, devices, and domains. According to Javaid (2024), there is a demand 
for artificial intelligence (AI) models that can execute rapid analysis and comprehension of many types of data, including 
text, photos, videos, audio, and other types of data. These single-modality models have demonstrated effectiveness in 
their respective domains; however, real-world scenarios frequently involve intricate associations between different 
data types, which renders them unsuitable for tasks that require a comprehensive understanding of multimodal inputs 
(Liang et al., 2024). The adoption of artificial intelligence in multiple domains has rapidly grown in recent years 
(Akinyele et al., 2024, Mudele et al., 2019, Mudele et al., 2021a, Mudele et al., 2021b). 
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Most artificial intelligence systems focus on a single mode, like computer vision for classifying images or natural 
language processing for analyzing writing. These models can find new skills and make tasks easier because they 
combine different types of strengths found in data. Textual and visual data can be used together to help people better 
understand what they are seeing in movies or write more accurate picture captions. Gupta et al. (2024) say that a unified 
method to multimodal learning is a big part of how artificial intelligence studies are moving forward. This is because it 
can link a lot of different types of data and make AI systems that are better at adapting to different situations. So, this 
study looks into the future of multimodal foundation models with the goal of making them fairer, lowering processing, 
and using them with audio, sensor data, and robotics. 

2. Methodology 

A systematic search strategy and five scientific databases (PubMed, Google Scholar, Scopus, IEEE, and Science Direct) 
were used to find research papers related to Multimodal Foundation Models for Unified Image, Video, and Text 
Understanding (Zhao et al., 2020). There were also meeting proceedings, books, dissertations, and master's theses. What 
were typed into the search engine include "Multimodal Foundations", "Unified Image, Unified Video, and Text 
Understanding." For this study, an extensive list of abstracts was compiled and carefully read. Any publications that met 
the selection criteria were carefully investigated. The study included all papers that came out up until 2024. 

3. Results 

3.1. Overview of Multimodal Learning 

Building models that can handle, combine, and evaluate input from different modes is what multimodal learning is all 
about. As Duan et al. (2024) say, this method goes beyond single-modality AI models because it combines text, images, 
videos, audio, and sensor data into a single representation. Because they have a solid understanding of the subject, 
models can look for images based on textual queries, explain visuals, and answer questions about videos. There are 
many reasons why multimodal learning is very important in artificial intelligence. Using a variety of methods together 
helps models understand things better. When you combine MRI scans with written patient records, you get more 
contextual information that one modality might not have (Xu et al., 2024) that makes medical imaging findings more 
accurate. Additionally, multimodal models show better performance across a range of jobs. The model can successfully 
handle new inputs when representations are moved between different modalities (Zhang et al., 2020). Multimodal 
systems are also more reliable in real life because they can use information from another modality to make up for noisy 
or lost data in one modality.  

If an artificial intelligence model can't tell what something is by looking at it, it might use text or voice prompts to figure 
out what it is. For the same reason, not having to train models for every mode speeds up development and makes it 
easier to use AI in many different areas and tasks (Baduge et al., 2022). In the end, the progress made in bidirectional 
learning could help solve more complicated problems in the real world than old models. The field has progressed 
significantly with the implementation of transformer architectures like Flamingo and CLIP, which adeptly handle both 
textual and visual data (Chen et al., 2024). Integration of learning across different modalities is a necessary first step 
toward creating general-purpose AI systems that can think like humans.  

3.1.1. Applications: Image Captioning, Video Analysis, and Text-Based Image Retrieval 

The applications of multimodal foundation models span across multiple domains, with a broad range of use cases that 
leverage the integrated understanding of different data types. Some of the most prominent applications include: 

Image captioning generates informative text from an image. Multimodal models learn to analyze image content and 
write suitable text. CLIP and Flamingo have generated outstanding captions by learning image-text representations 
(Ghandi et al., 2023). These models recognize visual items and infer relationships, resulting in more contextually correct 
descriptions. Image captioning helps visually challenged people interpret photos and organizes and retrieves large 
image collections in stock photography marketplaces and content management systems (Al-Malla et al., 2022). 

Video analysis is complicated and requires visual and temporal knowledge. Video BERT and other multimodal models 
use frames and captions, subtitles, and metadata to recognize activities, segment scenes, and summarize videos (Rafiq 
et al., 2021). Video question-answering tasks need profound cross-modal thinking as the AI analyses a video clip and 
answers questions depending on its content. Video analysis is useful in entertainment, surveillance, and education. 
Media production models can classify sequences or generate highlights based on audience preferences. Video-based 
learning platforms can personalize video content and create quizzes (Bulathwela, 2023). 
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Text-based image retrieval use queries to find images. Learning shared text and image representations allows 
multimodal foundation models to do this. This application is valuable in e-commerce, where customers search for 
products using descriptive phrases (Zhang et al., 2022). It searches and categorizes massive volumes of visual data using 
textual queries in content moderation and media curation. 

3.2. Single-Modality vs. Multimodal Models: Historical Focus and the Shift Towards Multimodal Models 

AI models have mostly been developed to solve problems with a single mode. Xu et al. (2024) say that models must be 
made that are experts at handling and understanding text, images, and audio data. Early text-only models, such as Bag-
of-Words (BoW), and later NLP models, such as Word2Vec and GloVe, noted word embeddings and changed the 
meanings of words based on the text around them (Incitti et al., 2023). By learning spatial hierarchies in visual data, 
convolutional neural networks (CNNs) changed the way images are identified in computer vision. For example, Liu et 
al. (2024) found that single-modality models were great at their own tasks but not so good at multi-modality tasks. 

Real-world scenarios rarely involve isolated modalities. People and robots use numerous data types in real life. Images 
typically have text, films are visual and auditory, etc. Complex tasks revealed single-modality model limitations. An AI 
reading a video scene may need to consider both the visual aspects and the audio or textual metadata to completely 
understand the context (Shoumy et al., 2020). This has led to the use of multimodal models, which unify understanding 
across data kinds. Multimodal models learn joint representations that combine features from various modalities for 
deeper, context-aware processing. Multimodal learning is based on the idea that integrating diverse types of data helps 
us comprehend more since it mimics how humans interpret sensory inputs. Multimodal models are used in image 
captioning, visual question answering, and video analysis (Liang et al., 2024). Research has shown that mixing input 
from many modalities increases task performance and opens new possibilities that single-modality models cannot 
(Proca et al., 2024). 

3.3. Multimodal Learning Paradigms: Early Fusion vs. Late Fusion 

 

Figure 1 Data Modality Fusion Strategies (Adopted from Huang et al. 2020) 

Multimodal learning can be categorized into different paradigms based on when and how the integration of modalities 
occurs within the model. The two primary approaches are early fusion and late fusion, each with its own advantages 
and challenges. 

Early Fusion (Feature-Level Integration) integrates various modalities at the feature level. Before passing through the 
model, data from each modality is mixed at the start of the learning process (Boulahia et al., 2021). Pixel values from 
images and word embeddings from text are concatenated into a single representation in early fusion models. The model 
learns from this joint feature space to capture early correlations and interactions between modalities. 

Late Fusion (Decision-Level Integration) delays modality integration till decision time. This method processes each 
modality separately through its own pipeline and combines its outputs or predictions at the end to decide (Pawłowski 
et al., 2023). In an image-text task, an image-processing network and a text-processing network would separately make 
predictions, which would be combined via weighted averaging or attention-based aggregation. 

3.4. The Role of Transformers: Impact on Multimodal Tasks and Cross-Modal Attention Mechanisms 

Multimodal learning is all about making models that can take in, combine, and judge information from different learning 
styles. Duan et al. (2024) say that this method is better than single-modality AI models because it makes a single 
representation out of text, photos, videos, audio, and sensor data. Models can look for pictures based on text queries, 

https://slds-lmu.github.io/seminar_multimodal_dl/c03-00-further.html#ref-HuangFusion2020
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explain images, and answer questions about videos because they know a lot about the subject. Learning in more than 
one way is very important in artificial intelligence for many reasons.  

Models can better understand things when they use a number of different ways together. When you put together MRI 
scans and written patient records, you get more contextual information that one method might not have (Xu et al., 2024) 
that helps you get more accurate results from medical imaging. Additionally, mixed models work better for many 
different types of tasks. It is possible for the model to handle new inputs when representations are changed between 
senses (Zhang et al., 2020). It's also safer to use multimodal systems in real life because they can use data from another 
modality to make up for data that is lost or busy in one modality.  

If a computer program can't figure out what something is just by looking at it, it may use voice or text hints to do so. In 
the same way, not having to train models for each mode speeds up progress and makes it easier to use AI in lots of 
different situations (Baduge et al., 2022). Finally, the progress made in two-way learning could help real-world 
problems that are more difficult to answer with old models. Transformer designs like Flamingo and CLIP, which can 
handle both textual and visual data well, have made a lot of progress in the field (Chen et al., 2024). Putting together 
different ways of learning is the first thing that needs to be done to make general-purpose AI systems that can think like 
people.  

Another example is Flamingo, which enhances the architecture to handle both images and sequences of text, thereby 
leveraging the transformer's ability to process multi-modal inputs (Binte Rashid et al., 2024). Flamingo employs cross-
modal attention to effectively capture the interactions between images and text in tasks such as visual question 
answering, integrating visual tokens with textual tokens (Lin et al., 2023). The adaptability of transformers, particularly 
in modelling intricate relationships among various data types, has sparked advancements in cross-modal learning. 
Transformers allow for dynamic attention across different modalities, facilitating the integration and alignment of 
multimodal inputs. For roles that require both surface-level modality matching and profound semantic comprehension 
along with data type reasoning, they are ideal (Bhattacharyya, 2023). Moreover, the emergence of transformer-based 
multimodal models has contributed to enhancing scalability and generalization. The flexibility of these models for real-
world applications is notable, as extensive pretraining on large multimodal datasets, combined with fine-tuning for 
specific downstream tasks, has enabled them to generalize effectively across various tasks and domains (Han et al., 
2021). 

4. Key Architectural Advancements 

Multimodal foundation models have advanced to create a unique architectural advance that seamlessly integrate data 
from images, videos, and text. These architectural enhancements have enabled models to handle different tasks, cross-
modal thinking, and complicated real-world situations (Chen et al., 2024). This section covers multimodal model design 
advances such unified model design, pretraining tactics, and fine-tuning methods that have led to world-class 
performance. 

4.1. Unified Model Design 

The key innovation behind multimodal foundation models is their unified design, which allows the model to 
simultaneously process and integrate visual, textual, and sometimes temporal information (Liang et al., 2024). Unified 
models aim to learn joint representations from multiple modalities, meaning that the model can understand how 
different forms of data (e.g., images and text) relate to one another (Xiong et al., 2022). This capability is crucial for tasks 
like image captioning, video analysis, and text-based image retrieval, which require reasoning across different types of 
inputs. 

4.1.1. Vision-Language Models (VLMs): CLIP and Beyond 

Multimodal Vision-Language Models (VLMs) align visual and textual data. These models have revolutionized how 
humans perceive words and visual material by mapping images and text into a shared embedding space (Ghosh et al., 
2024). One famous example is OpenAI's CLIP (Contrastive Language-Image Pretraining). CLIP pretrains on a vast 
dataset of images and text descriptions to match text and images. CLIP's contrastive learning aim, where the model 
learns to associate matching pairs of images and text (images and captions) while discriminating non-matching pairings, 
is its main novelty (Shi et al., 2024). ALIGN (Learning from Noisy Text) aligns visual and textual representations using 
contrastive learning like CLIP. ALIGN outperforms CLIP in cross-modal tasks by pretraining with larger datasets. The 
approach is adaptable because large-scale pretraining allows it to generalize across more ideas (Jin et al., 2023). 
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4.1.2. Video-Text Models: Handling Temporal Information 

VLMs like CLIP excel at image-text tasks, whereas video-text models are built to handle video data's temporal dimension. 
Video content includes both frames and continuous occurrences. This adds complexity since the model must learn to 
capture frame temporal correlations and align them with textual descriptions or enquiries (Madan et al., 2024). Video 
BERT is a popular video-text model that applies transformer-based text modelling to video understanding. Video BERT 
interprets video frames as "tokens" in a sequence, way NLP models do text (Khan, 2023). Visual tokens and textual 
tokens (e.g., speech transcriptions or subtitles) are learnt together to generate joint representations. For action 
recognition, video summarization, and video question answering, Video BERT's capacity to learn temporal 
dependencies is its main architectural achievement (Shakil et al., 2024). 

4.2. Pretraining and Fine-tuning Techniques 

Pretraining on large datasets has become a central part of developing multimodal models. This approach involves 
training a model on massive amounts of data to learn general-purpose representations that can later be fine-tuned for 
specific downstream tasks (Han et al., 2021). Pretraining methods in multimodal models often rely on techniques like 
masked modelling, which allow the model to capture relationships between modalities in a self-supervised or semi-
supervised manner (Zong et al., 2024). 

Multimodal models pretrain with masked modelling. This method is influenced by NLP models like BERT, which mask 
particular words in a phrase and train the machine to anticipate them based on context (Bugliarello et al., 2021). Masked 
modelling is extended to include visual and textual data in multimodal learning to build representations that integrate 
both modalities. Multimodal model Flamingo pretrains on images and text via masked modelling (Sun et al., 2023). 
Pretraining in Flamingo masks text and picture input. The algorithm is trained to predict masked sections using data 
from both modalities. This method teaches the model to fill in gaps and capture intricate text-image interactions. The 
model can anticipate what a masked image should contain using the associated text. If text is masked, the model can 
deduce the missing information from the image (Alhabeeb and Al-Shargabi, 2024). 

5. Applications of Multimodal Models 

Multimodal models have shown remarkable versatility across a wide range of applications that require the integration 
of visual, textual, and sometimes temporal information (Bayoudh et al., 2022). From improving human-computer 
interaction in the form of visual question answering (VQA) to enabling highly accurate caption generation and 
enhancing cross-modal search and retrieval, these models are reshaping how AI interacts with and interprets 
multimodal data. Below, some of the key applications in discussed in detail (Lu et al., 2023). 

5.1. Visual Question Answering (VQA) 

Images and natural language processing are used in visual question answering (VQA). In VQA, the model is shown an 
image and a text-based inquiry on its content (Wu et al., 2017). The model must assess the image, comprehend the 
inquiry, and respond appropriately. This task is difficult since the model must reason across vision and language and 
often complicated object relations, scene understanding, or background knowledge (Ali et al., 2023). Visual BERT and 
ViLBERT use transformers to merge visual and textual information, setting new standards for VQA activities. Visual 
BERT adds image features to the text-only BERT architecture (Manzoor et al., 2023). However, ViLBERT (Vision-and-
Language BERT) merges visual and textual data from two streams using attention techniques. This architecture lets the 
model  acquire relationships between image items and their textual descriptions, boosting its capacity to answer 
difficult visual enquiries (Khan et al., 2022). VQA models are used in assistive technologies for the visually impaired, 
automated customer care, and interactive educational systems where users may ask questions about images or videos 
and get thorough answers (de Freitas et al., 2022). 

5.2. Caption Generation 

Caption generation is another critical application of multimodal models, where the goal is to generate descriptive text 
from visual data, be it an image or video. The challenge here lies in capturing the essential elements of the visual content 
and articulating them in grammatically correct and semantically rich sentences. Models must not only recognize objects 
and actions but also understand their relationships and contextual significance (Wang et al., 2020). 

5.3. Cross-Modal Search and Retrieval 

One of the most practical and impactful applications of multimodal models is their ability to perform cross-modal search 
and retrieval tasks. These models allow for efficient search across different data types, such as using text to search for 
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images or videos, or generating textual summaries based on visual input (Beltrán et al., 2021). Cross-modal search is 
critical for applications like search engines, content recommendation systems, and media libraries, where users need 
to retrieve relevant information across modalities quickly and accurately (Wang et al., 2016). 

6. Challenges and Limitations 

While multimodal foundation models have made significant advances in unifying the understanding of image, video, 
and text data, several challenges remain. These challenges stem from the complex nature of working across multiple 
modalities, as well as the high demands placed on data, computational resources, and model interpretability (Chen et 
al., 2024).  

6.1. Data Requirements 

One of the most significant challenges in building effective multimodal models is the sheer scale and quality of data 
required for training (Liang et al., 2021). Multimodal models, especially those aimed at image, video, and text 
understanding, need massive, diverse datasets to capture the richness and variety across different modalities (Zhang et 
al., 2024). 

6.1.1. Large-scale Datasets 

For multimodal models to perform well across diverse tasks, they must be pretrained on enormous datasets. Leading 
models like CLIP and ALIGN rely on hundreds of millions, if not billions, of image-text pairs sourced from the internet 
(Zhang et al., 2024). Datasets like JFT-300M and LAION have become foundational to the training of these models 
(Takashima et al., 2023). For instance, JFT-300M contains hundreds of millions of labelled images, while LAION offers 
an open-source, large-scale dataset of image-text pairs designed specifically for training vision-language models (Desai, 
2024). However, curating such large datasets presents several challenges. First, acquiring this data at scale requires 
significant resources in terms of both storage and infrastructure. In addition, these large datasets must capture the full 
spectrum of visual and linguistic diversity, covering various domains, languages, objects, and activities. Training 
multimodal models on smaller or less diverse datasets would limit their ability to generalize across different tasks and 
contexts (Fung et al., 2023). 

6.1.2. Data Biases 

Another critical issue related to data is bias. Many of the large-scale datasets used to train multimodal models are 
scraped from the internet, which introduces inherent biases in terms of geography, culture, and social norms (Watson 
et al., 2023). These biases can significantly impact the fairness and accuracy of the model, especially when deployed in 
real-world applications. For example, models trained on internet-based datasets might over-represent certain 
demographics, leading to skewed outcomes in tasks like facial recognition or caption generation (Rice et al., 2019). 
Gender, racial, and cultural biases are common in multimodal datasets. If a model trained on biased data is tasked with 
generating captions for images or answering questions about visual content, it may perpetuate harmful stereotypes or 
produce inaccurate results (Hirota et al., 2022). These biases not only affect the fairness of AI systems but also raise 
ethical concerns about the widespread deployment of such technologies. Addressing these biases requires careful 
dataset curation and post-processing techniques, such as data augmentation and bias mitigation strategies, to ensure 
that the models perform equitably across all user groups (Siddique et al., 2023). 

6.2. Model Interpretability 

One of the biggest hurdles in deploying multimodal foundation models is their inherent black-box nature. These models 
often operate as highly complex systems, with millions or billions of parameters that make their decision-making 
processes difficult to interpret (Hassija et al., 2024). As AI systems are increasingly applied to high-stakes domains such 
as healthcare, autonomous driving, and legal systems there is growing demand for more transparent and interpretable 
models (Chau, 2024). 

7. Evaluation Metrics for Multimodal Models 

Multimodal foundation model evaluation is complicated. Multimodal models must examine how well they integrate and 
reason across modalities, unlike single-modality models that only need task-specific metrics (Wang et al., 2024). 
Evaluation often considers task-specific performance, cross-modal consistency, and generalization to new tasks or 
datasets.  
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7.1. Task-specific Metrics 

The activities multimodal models accomplish are evaluated using specified metrics to measure their efficacy. 
Multimodal models can do caption creation, visual question answering (VQA), and cross-modal retrieval, hence their 
assessment metrics vary by task (Xi et al., 2020). Accuracy, precision, recall, and F1-score are commonly used for VQA, 
picture classification, and object detection. These metrics show how well the model predicts or detects meaningful 
information across modalities. Accuracy is the percentage of model predictions that are correct. VQA measures how 
often the model answers a question correctly based on visual input (Sharma and Jalal, 2021). Precision measures how 
well the model makes favourable predictions, whereas recall measures its capacity to catch all relevant instances. 
Precision and recall are combined into the F1-score to quantify the model's performance, especially in class imbalance 
tasks like spotting rare items in photos (Juba and Le, 2019). 

7.2. BLEU and METEOR for Caption Generation 

Specified criteria are used to evaluate the quality and fluency of natural language descriptions generated by the model 
for image and video captioning. Bilingual Evaluation Understudy (BLEU) and METEOR are common metrics in this 
domain (de Souza Inácio and Lopes, 2023). BLEU measures the overlap between model-generated captions and human-
written reference captions. BLEU counts the number of n-grams (word sequences) in the generated caption that match 
the reference captions (Rafiq et al., 2021). BLEU is a popular metric for machine translation and caption generation; 
however, it doesn't account for synonyms or text fluency. BLEU scores precise matches, but METEOR scores synonyms 
and paraphrases to provide a more sophisticated assessment of created text (Callison-Burch et al., 2006). METEOR 
scores fluency and semantic accuracy by stemming, synonym matching, and paraphrasing generated captions against 
reference captions. Captioning tasks are evaluated using BLEU, METEOR, CIDEr, and ROUGE (Khurana and Deshpande, 
2021). CIDEr focusses on the consensus of numerous reference captions to match human caption quality judgements, 
while ROUGE measures recall by counting reference n-grams in the generated caption (de Souza Inácio and Lopes, 
2023). These metrics are useful, but they cannot capture sophisticated multimodal learning characteristics like semantic 
understanding and contextual reasoning, which are critical for video captioning and VQA. 

8. Future Directions 

As multimodal foundation models continue to gain prominence, significant research and development opportunities lie 
ahead, particularly in broadening their capabilities, improving efficiency, and addressing ethical concerns. These future 
directions highlight potential advancements that could reshape how multimodal AI is applied across industries and 
scientific disciplines. 

8.1. Unified Models for More Modalities 

8.1.1. Beyond Image, Video, and Text 

Presently, multimodal foundation models prioritize images, videos, and text. In the domains of picture captioning, video 
understanding, and text-based retrieval, current methods have proven adequate; however, there is an increasing 
interest in integrating additional modalities to create more comprehensive artificial intelligence systems (Chen et al., 
2024). The incorporation of audio would enhance the interpretation of multimodal videos and facilitate the generation 
of content driven by speech. A model capable of recognizing both audio and video have the potential to enhance the 
richness of video summaries and improve voice recognition by integrating visual signals (Sulubacak et al., 2020). 

Future multimodal models may require the integration of environmental sensor data, lidar, and radar technologies. This 
has the potential to revolutionize intelligent environments and self-driving vehicles, where immediate decision-making 
necessitates the analysis of intricate data flows from various origins (Alabyad et al., 2024). The integration of these data 
formats, alongside images, videos, and text, would facilitate the development of more complex and contextualized 
models capable of managing real-world intricacies (Yan et al., 2024). The integration of wearable sensor data, patient 
histories, and medical imaging has the potential to improve patient monitoring systems, tailor treatment plans, and 
refine diagnosis (Singh et al., 2024). In medical fields, the potential of multimodal learning is highly encouraging. 
Integrating multiple data sources into a single model can enhance the precision and effectiveness of healthcare delivery 
(Shaik et al., 2023; Ajayi et al., 2024; Davies et al., 2024). 
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8.1.2. Multimodal Foundation Models in Robotics 

 

Figure 2 Robotics related interactions (Frijns et al., 2023) 

The exploration of multimodal models in the realm of future robotics presents a thrilling opportunity. Robots are 
required to analyze and integrate multiple data streams to navigate intricate environments (Wang et al., 2024). The 
enhancement of robotic comprehension and reaction to auditory, gestural, and visual directives may be achieved 
through the integration of cohesive multimodal models. To determine the suitable response, smart home robots are 
capable of interpreting vocal commands, recognizing gestures, and visually assessing their environment (Saunders et 
al., 2015). 

By integrating camera, radar, and lidar data alongside map annotations, multimodal models have the potential to 
enhance the navigation capabilities of autonomous vehicles and drones, enabling them to avoid obstacles and improve 
their understanding of the environment (Yeong et al., 2021). Unified models may facilitate the development of robots 
capable of executing intricate tasks such as search-and-rescue, by allowing them to make decisions in unpredictable and 
dynamic environments through the integration of multimodal input streams (Queralta et al., 2020). 

9. Conclusion 

Multimodal foundation models let machines to process and understand images, videos, and text in a single framework, 
advancing artificial intelligence. This review has examined the architectural improvements and methods that have 
advanced AI research with these models. Transformers, contrastive learning, and pretraining procedures like masked 
modelling helped transform single-modality models into multimodal systems. CLIP, ALIGN, Flamingo, and Video BERT 
demonstrate multimodal learning's potential by performing challenging image classification, video analysis, and cross-
modal retrieval tasks. Despite these advances, the field faces substantial obstacles. Large datasets, model 
interpretability, and multimodal model training computational demands hinder acceptance and deployment. 
Additionally, bias, justice, and multimodal AI ethics must be addressed. 

Future research in multimodal foundation models is promising. Multimodal AI applications will grow as AI systems 
include audio, sensor, and robotic inputs. Effective model designs, knowledge distillation, and transfer learning will 
make these models more scalable and useful by more organizations. To develop trust in these technologies, bias 
mitigation and ethical, transparent AI systems must be prioritized. In conclusion, multimodal foundation models have 
transformed AI by providing a more comprehensive and integrated view of data across modalities. As research 
improves these models, they will unlock the full potential of unified picture, video, and text interpretation, enabling a 
new generation of intelligent devices that seamlessly interact with the world. 
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