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Abstract 

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for 
analyzing sequence of data in dynamical system is proved in different literatures. In this paper, Bayesian approach for 
approximation of variances in measurement noise with KALMAN filter is applied for estimation of the dynamical state 
and measurement data in discrete dynamical system. Detection of uncertainty and estimation of those can be done 
simultaneously with adaptive KALMAN filter. This algorithm at each step time estimates noise variance and state of 
system with KALMAN filter. Then, approximation is formed at each step separately and at each step sufficient statistics 
of the state and noise variances are computed with a fixed-point iteration of a KALMAN filter. For showing influence of 
variance in measurement data on algorithm different simulations is applied. First, effect of variance and its distribution 
on detection performance is simulated in KALMAN filter without Bayesian formulation. Then simulation is applied to 
KALMAN filter with ability of variance tracking of measurement data.in these simulations, influence of distribution of 
measurement data in each step is estimated and true variance of data is obtained by algorithm and is compared in 
different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement 
is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these 
simulations are explained.  
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1. Introduction

The KALMAN Filter (KF) can be estimated dynamical state from noisy measurements. In this method, dynamic and 
measurement processes can be approximated by linear Gaussian state space models [1]. This model is a practical model 
in engineering due to modelling of various noises. The extended KALMAN filter (EKF) and the unscented KALMAN filter 
(UKF) encompasses this method to nonlinear dynamical states and measurement by forming a Gaussian approximation 
to the posterior state distribution in modelling [2]–[5]. A serious constraint in these filters is that they assume priori 
knowledge of the measurement and the parameters of dynamical model, including the noise statistics status. The exact 
knowledge of the parameters and especially the noise statistics characteristics is not obvious and we don’t have exact 
information about it in many practical situations. Examples of such applications are integrated GPS positioning systems 
or fault detection systems [6], [7]. For solving this problem and solving uncertain parameters in model there is a 
different algorithm that among those, adaptive filters are common. This approach can be estimated noise statistics 
characteristic and also estimation of dynamical states and measurement can be done simultaneously [8]-[9]. In 
literatures, different adaptive filtering approach is divided to Bayesian and correlation analysis and also covariance 
matching methods [8]. 

In different signal processing applications, there are many sources of interference and noise in systems and in these 
conditions, efficiency of algorithm for computation and estimation is vital. Bayesian approach is more common from 
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other approaches and in different computational signal processing, this approach is used. As said before, estimation of 
uncertainty with dynamical states is important in filtering problems and Bayesian approach is a strong method for 
approximation of posterior status of these disturbances. Some references like [10] and [11] is used multiple model 
methods and state augmentation approach which is developed from Bayesian formulations. On the other hand, 
references like [12,13 and 14] is used and developed Bayesian approach based on approximation of posterior 
distribution and one of the important advantages of this algorithm is related to low computational cost time. Moreover 
ref [14] is developed an approach for recursive Bayesian inference and its approach is suitable for signal processing 
applications. 

In recent years, approximation algorithm for linear and nonlinear state space models with unknown and varying 
variances is proposed. In ref [15], a KALMAN smoother with Variational structure is proposed for approximation of 
stationary noises. On the other hand, in ref [16], a fixed form approach for models with time varying variances is 
proposed. One disadvantage of its approach is preparation of exact model of dynamical system and also statistical 
information should be accurate and available for algorithm. 

In ref [17] Bayesian adaptive KALMAN filter is formulated and it can be used for variances in measurement and with 
dynamical state. But in this paper, we developed a series of simulation in conditions when variance of measurement has 
different distribution and statistical characteristics and then performance of approach for following and tracking this 
variance is modelled. Also, a nonlinear state space model is applied to these approach and estimation of states and 
measurement of system with adaptive KALMAN filter is investigated. Finally, the paper is structured as follows. 

In this paper, first overall structure of algorithm for KALMAN filter is shown schematically. In many references, this 
method is used extensively regarding the approximation the joint posterior distribution of the state and the noise 
variances. Section 3, is related to problem formulation of adaptive KALMAN filter and steps for update and estimation 
in this approach is explained. Next, in section of experimental results, a series of simulation is applied and accordingly 
performance of approach for estimation of variance is simulated. Finally, in a nonlinear state space model for pendulum 
this approach is applied and estimation of measurement for this model is used.  

2. Overall structure of algorithm 

 

Figure 1 Overall structure of algorithm 
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In this section overall steps of algorithm from dynamical state formation and modelling to using of Bayesian approach 
for obtaining the recursion update for posterior estimation is shown in Fig. 1. 

3. Problem Formulation 

Summary formulation of algorithm is explained in blow second sections. 

3.1. Overall modelling of dynamical system 

The discrete-time linear state space model can be considered here by (1)  

………….. (1) 

Where  ∼ N (0,  ) is the Gaussian process noise, rk ∼ N (0, Σk) is the measurement noise with assumed covariance 
Σk, and the initial state has a prior Gaussian distribution x0 ∼ N (m (0), P (0)).  

The measurement yk is a d-dimensional vector and the state  is an n-dimensional vector. Time is shown by k in the 
matrices   , Hk,  , as well as the parameters of the initial state m0, P0 are assumed to be known in initial condition.  

Now, departing from the case of standard KALMAN filter, observation noise variance parameters , i = 1, . . ., d, are 
stochastic with independent dynamic models. We denote the diagonal covariance matrix by Σk= diag (σ2... σ2).  

The construction of a suitable dynamical model of the observation noise variances will be discussed, and at this stage it 
is denoted generically by p (Σk | Σk−1). Dynamic models of the states and the variance parameters are assumed 
independent according to the (2). 

…….. (2) 

The goal of Bayesian optimal filtering of the above model is to compute the posterior distribution p (  , Σk | y1: k). 
Generally, the well-known recursive solution to this filtering problem consists of the following steps [17]. 

Initialization: The recursion starts from the prior distribution p (x0, Σ0). 

 Prediction: The predictive distribution of the state  and measurement noise covariance Σk is given by the Chapman-
Kolmogorov equation. Chapman – Kolmogorov equation compute marginal distribution of nuisance variable statistics 
characteristics. This identity integrates the joint probability distributions on different probability space on a stochastic 
process.  

Update: Given the next measurement yk, the predictive distribution above is updated to a posterior distribution by the 
Bayes’ rule that is written in (3). 

………..   (3) 

In [17] the recursion and suitable dynamics for the observation noise variances for the posterior update is proposed. 

3.2. Bayesian inference formulation 

Conditional distribution for  and Σk−1 is computed from the measurements y1… yk−1. An Independent Inverse-
Gamma distribution is modeled as follows in equation (4). In this stage a conjugate prior assumes a closed form 
expression for the posterior update. Furthermore, state and observation noise variance coupled through the 
likelihood𝑝(𝑦𝑘|𝑥𝑘 , ∑𝑘).  

P (𝑥𝑘−1, ∑ 𝑘 − 1|𝑦1:𝑘−1) = 𝑁(𝑥𝑘−1 |𝑚𝑘−1, 𝑝𝑘−1) × ∏ 𝑖𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎(𝜎𝑘−1
2 |𝛼𝑘−1,𝑖

−𝑑
𝑖=1 , 𝛽𝑘−1,𝑖) , … … . (4) 
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This approximation is chosen, because the Inverse- Gamma distribution is the prior distribution. Also, using an Inverse-
Gamma model for variances of Gaussian models is common in Bayesian analysis [17] because the dynamics of the state 
and observation noise variances are assumed to be independent.  

It should be said in the posterior update step, the state and observation noise variance parameters will be coupled 
through the like hood distribution p (yk xk,Σk). 

By forming the standard variation Bayesian (VB) approach [16]-[17] the finalized prediction updated cycle is obtained 
as follows in the (5)-(10). 

𝑄𝑥(𝑥𝑘) = 𝑁(𝑥𝑘|𝑚𝑘, 𝑃𝑘) … … … … … . (5) 

𝑄𝑥(∑ 𝑘) = ∏ 𝑖𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎(𝜎𝑘−1
2𝑑

𝑖=1 |𝛼𝑘−1,𝑖
− , 𝛽𝑘−1,𝑖)………. (6) 

𝑝𝑘 = 𝑝𝑘
− − 𝑝𝑘

−𝐻𝐾
𝑇(𝐻𝐾𝑝𝑘

−𝐻𝐾
𝑇 + ∑𝐾

Λ)−1𝐻𝐾𝑝𝑘
− ……….. (7) 

(8) ……………..(9) 

…………………(10) 

Also, dynamic model of noise variance usually is not defined but it can be modeled by approximate posteriors. First in 
algorithm expected measurement noise precisions is considered constant, and then their variances are increased by a 
factor of ρ (ρ ∈ (0, 1]). This is obtained by following as in (11) and (12). 

……………(11) 

………… (12) 

In these equations ρ=1 correspond to stationary variances and lower values increase their assumed fluctuation. In the 
modeling if the cross correlation between the prediction and observation error is ignored, then covariance becomes 
diagonal matrix and in many practical situations it is a proper assumption.  

In the KALMAN filter joint posterior of state and observation noise variance can be found in a fixed iteration update. 
Then new expected noise covariance is computed. 

4. Experimental Results  

In this section, different simulation results are explained. First conditions when noise variance cannot be estimated by 
approach are presented in two different situations. Then, simulation results is done for KALMAN filter with ability of 
approximation for variance in measurement of data and influence of variance in measurement and its distribution is 
discussed. Also, in simulation results the variance of measurement is increased to show the effect of variance in this 
modeling approach. This artificial data has time varying error and also has unknown time varying variance. An example 
of the time varying nature of the errors involved is the initialization of the sensor error states. 

4.1. Adaptive KALMAN filter without ability of approximation of variances 

The first simulated data is shown in Fig. 2 and it is related to measurement of system with its estimation and then 
estimation of dynamical states through this KALMAN filter is shown in Fig. 3. Finally, estimated variance trajectory with 
true variance is compared and plotted in Fig .4. Because of wrong initial condition in variance the well matching is not 
obtained. However, the amplitude of this distribution in middle of time step is increased but it has more fluctuation. 
Also, the default variation of true variance is as follows. First in the simulation the measurement noise has the variance 
of o.2 and in the time step of 100 the variance quickly is increased to 1.45 and around time 200; it again quickly decrease 
to value 0.7. But, in the Variation Bayesian adaptive KALMAN filter the transition probabilities can be chosen in such a 
way that probability of switching mode from one mode to another is matched to the variation of variance with some try 
and error. 
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Figure 2 Estimated measurement data with KALMAN filter 

 

 

Figure 3 Estimation of dynamical states through KALMAN filter 
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Figure 4 Comparison of true and estimated variance trajectory 

In Fig .5 measurement data of another dynamical system is plotted with its estimation and also this simulation has more 
noise from former simulation. Next, dynamical state estimation with this approach is plotted in Fig.6 and finally the 
performance of KALMAN filter without ability of estimation of variance is plotted in Fig.7. Comparison of former 
simulation is in second simulation, due to the higher variance in measurement data the performance of KALMAN filter 
for variance following is poor and this makes that variation Bayesian for approximating of noise and variance is more 
important. 

 

Figure 5 Estimated measurement data with KALMAN filter 
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Figure 6 Estimation of dynamical states through KALMAN filter 

 

 

Figure 7 Comparison of true and estimated variance trajectory 

4.2. Adaptive KALMAN filter with ability of approximation of variances with erupted initial condition 

In this section KALMAN filter has ability of variance tracking of measurement data and it uses of Variational Bayesian 
approach. First Variance trajectory in different initial conditions is plotted and in this situation again the variance 
following is erupted with irreverent initial condition. This irregularity in initial condition of approach has important 
effect on variance tracking because the resulted error due to this condition cannot be removed in short step of algorithm 
and it has given deviation from exact variance trajectory and these conditions in two different simulations is applied. 
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Estimation of measurement and dynamical states with this approach for two different simulations is plotted in Fig.8 
and Fig.9 and respected trajectory following is plotted in Fig.10 and Fig.11 respectively. 

 

Figure 8 Estimated measurement data and dynamical states with KALMAN filter with Bayesian approach 

 

 

Figure 9 Estimated measurement data and dynamical states with KALMAN filter with Bayesian approach and more 
variance 
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Figure10 Comparison of true and estimated variance trajectory with KALMAN filter with Bayesian approach 

 

 

Figure 11 Comparison of true and estimated variance trajectory with KALMAN filter with Bayesian approach 

4.3. Adaptive KALMAN filter with ability of approximation of variances  

In this section, different simulations for developing the ability of KALMAN filter for variance trajectory following is 
investigated. Accordingly, in simulation the variance of measurement is increased and three simulations are examined 
in this section. The estimated measurement of data and dynamical states is plotted in Fig. 12 to Fig. 14 for each 
simulation and comparison of true and estimated variance trajectory following are plotted in Fig. 15 to Fig. 17 
respectively.in respected to simulation results is evident this approach has poor performance for trajectory following 
of data when the variance is high. 
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Although this approach use approximation to the variance distribution and forms Gaussian state distribution 
conditionality in each time step but in high dimensional data with irreverent variance structure the assumption of center 
of limit for modeling of this approach is not practical well. Furthermore, due to the recursive nature of the filter 
estimation, the performance of the filter is dependent on a priori estimate. This means that the adaptive filter is not 
entirely self-tuning so we should consider the dimension of data for using this approach. 

 

Figure 12 Estimated measurement data and dynamical states with KALMAN filter with Bayesian approach in case one 

 

 

Figure 13 Estimated measurement data and dynamical states with KALMAN filter with Bayesian approach in second 
case 
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Figure 14 Estimated measurement data and dynamical states with KALMAN filter with Bayesian approach in third 
case 

 

 

Figure 15 Comparison of true and estimated variance trajectory with KALMAN filter with Bayesian approach 

 

 

Figure 16 Comparison of true and estimated variance trajectory with KALMAN filter with Bayesian approach 
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Figure 17 Comparison of true and estimated variance trajectory with KALMAN filter with Bayesian approach 

5. Second modelling for Simple Pendulum with Noise disturbance 

In this section the continuous-discrete sequential is applied to estimation of a partially measured simple pendulum 
model which is distorted by a random noise term. The stochastic differential equation for the angular position of a 
simple pendulum, which is distorted by random white noise accelerations w(t) with spectral density q can be written 
as in (13). 

……..(13) 

If we define the state as x = (x dx/dt) and it is changed to state space form the model can be written as (14) and (15) [7]. 

………..     (14) 

………….(15) 

Assume that the state of the pendulum is measured once per unit time and the measurements are disturbed by Gaussian 
measurement noise with an unknown variance σ2 then a suitable model in this case can be written as in equation (16).  

𝑦𝑘 = 𝑁(𝑥1(𝑡𝑘)), 𝜎2) 

𝜎2 = 𝐼𝑁𝑉 − 𝑋2(𝜈𝑜, 𝜎𝑜
2) … … … . . (16) 

In Fig. 18 this model with measurement data, actual and estimated signal are plotted. According to the Fig. 18 it is 
evident that the estimation of signal is most generated in area with high concentration of data and in this area the 
correlation of our data is higher so this algorithm can detect this important information for producing and estimation 
of our signal. In this situation when high level of noise is inputted in measurement data this algorithm cannot follow the 
true signal well and this simulation is plotted in Fig. 19. In summary, when this method is chosen dimensional and 
variance of experiment should be considered and limitation of this approach to this condition is investigated. 
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Figure 18 Distribution of measurement with estimation of signal 

 

 

Figure 19 Distribution of measurement with estimation of signal with more noise variance 

6. Conclusion 

In this article, we have presented adaptive KALMAN filtering algorithm, which is based on recursively forming 
approximations to the joint distribution of state and noise parameters. The performance of the different variance 
measurement has been demonstrated in a simulated application. Then, limitation and performance of this approach in 
high dimensional data are simulated. 
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